The repository tinygrad is a minimalistic deep learning framework. It aims to provide a simplified yet functional implementation of gradient-based optimization algorithms and neural network architectures. The repository is written in Python and is designed to be lightweight and easy to understand.
README.md
: Provides an overview and basic instructions for the repository.CONTRIBUTING.md
: Guidelines for contributing to the project.docs
DirectoryREADME.md
: Documentation overview.quickstart.md
: Quick start guide for using tinygrad.adding_new_accelerators.md
: Guide for adding new hardware accelerators.env_vars.md
: Information about environment variables.examples
Directorybenchmark_train_efficientnet.py
: Benchmarking script for EfficientNet.compile_efficientnet.py
: Script to compile EfficientNet.compile_tensorflow.py
: Script to compile TensorFlow models.deep_deterministic_policy_gradient.py
: Example of Deep Deterministic Policy Gradient.efficientnet.py
: EfficientNet example.gpt2.py
: GPT-2 example.tinygrad
Directory