The repository tinygrad is a minimalistic deep learning framework. It aims to provide a simplified yet functional implementation of gradient-based optimization algorithms and neural network architectures. The repository is written in Python and is designed to be lightweight and easy to understand.
README.md: Provides an overview and basic instructions for the repository.CONTRIBUTING.md: Guidelines for contributing to the project.docs DirectoryREADME.md: Documentation overview.quickstart.md: Quick start guide for using tinygrad.adding_new_accelerators.md: Guide for adding new hardware accelerators.env_vars.md: Information about environment variables.examples Directorybenchmark_train_efficientnet.py: Benchmarking script for EfficientNet.compile_efficientnet.py: Script to compile EfficientNet.compile_tensorflow.py: Script to compile TensorFlow models.deep_deterministic_policy_gradient.py: Example of Deep Deterministic Policy Gradient.efficientnet.py: EfficientNet example.gpt2.py: GPT-2 example.tinygrad Directory